
Spinors and related tensors invariant under E(3) and its subgroups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1981 J. Phys. A: Math. Gen. 14 317

(http://iopscience.iop.org/0305-4470/14/2/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 16:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/14/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 14 (1981) 317-326. Printed in Great Britain 

Spinors and related tensors invariant under E(3) and its 
subgroups 

J Beckers and V Hussin 
Universitt de  Litge, Physique thtorique et mathtmatique, Institut de Physique au Sart 
Tilman, BLtiment B5, B-4000 Litge 1, Belgium 

Received 22 July 1980 

Abstract. Necessary and sufficient conditions of invariance on (first- and second-rank) 
spinors under the Poincart group are  established through an infinitesimal method. The 
group E(3) and its subgroups are then specifically considered and their invariant first-rank 
spinors are  derived. Second-rank spinors and four-vectors are also connected through 
invariance arguments, and their consideration enlightens some geometrical concepts such as 
Lie derivatives of spinor fields. 

1. Introduction 

Tensor fields invariant under some maximal subgroups of the conformal group of 
space-time have already been derived in this journal (Beckers et a1 1979). Let us 
hereafter denote this reference by I. It belongs to a series of recent studies on the 
PoincarC and (or) conformal groups and their subgroups (Bacry et a1 1970, Combe and 
Sorba 1975, Beckers and ComtC 1976, Beckers et a1 1978, Beckers and Hussin, to be 
published) and their implications on invariant tensor fields. 

Solutions to the Yang-Mills equations invariant under compact subgroups of the 
conformal group have also been studied (Harnad and Vinet 1978, Harnad et a1 1979a), 
and further interesting results were obtained (Harnad et a1 1979b) in connecting group 
actions on principal bundles and invariance conditions for gauge fields. 

More recently, invariant spinor fields have been systematically derived when 
PoincarC or conformal symmetries are under consideration (Beckers et a1 1980). In 
fact, non-trivial results were obtained in connection with the problem of determining 
the spinor fields which are invariant under subgroups of dimension ~6 of the Poincart 
group P(3, l ) .  

Let us note that such results already permit the construction of interaction terms in 
Lagrangians (analogously to the quantum electrodynamical case A,q’yC”q): these 
terms can effectively be made up of four-vectors and Dirac spinors invariant under a 
specific PoincarC subgroup. Furthermore, in connection with generalised Yang-Mills 
fields and equations, such methods could also be of special interest in gauge theories 
with specific symmetries. 

Here we want to take into account the specific transformation laws of spinors, first 
under the PoincarC group and then under the Euclidean group in three dimensions. 
Through an infinitesimal method analogous to the one developed in I, we then impose 
the invariance of these spinors in order to obtain necessary and sufficient conditions 
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corresponding to those already obtained (in I for example) on tensor fields in general 
and on four-vectors in particular. Moreover, besides specific results obtained through 
the example of the group E(3) and its subgroups, we can learn here how Lie derivatives 
act on spinors, a relatively elaborate notion of differential geometry (Kosmann 1966, 
1972, and references therein, Jhangianj 1978). In fact, this article is composed as 
follows: § 2 is devoted to the notation according to I and to a few generalities on the 
PoincarC group, on E(3) and its subgroups, and on spinors. Section 3 contains the 
discussion of invariance conditions on spinors with respect to the PoincarC group and its 
subgroups: the relation between second-rank, mixed, hermitian spinors and four- 
vectors is the key of these developments and the invariance conditions on first-rank (or 
fundamental) spinors are explicitly established. The case of the subgroup E(3) and its 
own subgroups is considered in § 4: the invariant fundamental spinors are explicitly 
derived. Finally, in 0 5 ,  returning to second-rank, mixed, hermitian spinors and to 
four-vectors, we express their invariance through Lie derivatives, showing how such 
concepts are working on spinors. We also discuss consistencies between invariance 
considerations and spin-tensor correspondences, by taking into account other recent 
results on invariant four-vectors (Beckers and Hussin, to be published) when E(3) and 
some of its subgroups are under study. 

2. Notation and generalities on E(3) and spinors 

According to the notation used in I, we deal with the space-time events x ‘{x”, 
p = 0, 1, 2, 3) {t, r }  and the Minkowski metric tensor GM = {g ” ” }  = diag 
(1, -1, -1, -1). We also consider the infinitesimal forms of the continuous coordinate 
transformations 

(2.1) 

, (2.2) x +xr: x’” = ( C Y v  + W ” y ) X V ,  ” K” -” ”” 
x 2x1: x r ”  = x ”  +CY”, 

w 

corresponding to space-time translations and to restricted Lorentz rotations respec- 
tively. These elements lead to the well known restricted inhomogeneous Lorentz or 
PoincarC group E(3, 1), a (non-maximal) subgroup of the conformal group of space- 
time, already discussed in I. The Lie algebra associated with equations (2.1) and (2.2) is 
ten-dimensional and is generated by {P”, M K ”  = (J, K ) } .  The J’s  refer to spatial 
rotations and the K’s to pure Lorentz transformations. These transformations can be 
parametrised in a very convenient way by 

(9’ =I 2 E  Ilk” I k  ( E  123 = I), ($1 = “01, i, j ,  k = 1, 2, 3, (2.3) 

so that 

{ w w v } =  (4, e). 
From I, and with such a parametrisation, it is easy to obtain the necessary and 

sufficient conditions of invariance of a general four-vector denoted A SS (A”)  = (V, A)  
under infinitesimal PoincarC transformations corresponding (from (2.1) and (2.2)) to 
the form 

(2.4) 

= x ” + t K .  ( 2 . 5 )  

(a, w )  x - x ’ : x r ” = ( ~ ” ~ ~ - “ ” ~ ) x ~ + C Y K  
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This has already been obtained in Q 4 of I by using an infinitesimal method applied to 
point transformations. From equations (4.14) in I, we immediately obtain 

DA(x) + w .  A(x)  = 0 (2.6) 

where D is a differential operator given by 

D = x . w .  V - a .  V = x,wPAaA - aidA 

= ( r .  +)a f at + (t+ + rho) . ajar - (Y . V. 

Through (2.3), we have 

W .  A = ( - + .  A,  -VI$ + @ A A )  (2.9) 

so that the necessary and sufficient conditions (2.6) become 

D V ( X )  - 4. A ( x )  = O  (2.10) 

and 

DA(x) + 8AA(x) - V ( X ) +  = 0. (2.11) 

These conditions correspond to equations (4.22) in I, restricted to the PoincarC context. 
As a final remark, we notice that these conditions are equivalent to the expression of 
vanishing Lie derivatives (Lx) of one-forms A ,  with respect to the vector fields X 
defined by equation' (2.5): 

X = ("a,. (2.12) 

This can be written 

LxA = 0 or 6" a,A, + A, a , X  = 0 (2.13) 

where A is a covariant four-vector. Other information on this geometrical approach 
can be found in Q 6 of I and in the work of Beckers et a1 (1978). 

Let us now mention that the subgroup structure of the PoincarC group has already 
been pointed out by different authors (Bacry et a1 1974, Patera eta1 1974). It evidently 
shows that the Euclidean group in three dimensions, E(3), belongs to such a structure: 
€33) is a subgroup of dimension six, which by definition is the group of transformations 
of the three-dimensional (real) vector space leaving the Euclidean distance between 
two points invariant. Its Lie algebra (J,  P )  is generated by three operators P (associated 
with spatial translations) and by three J's  (associated with true rotations) satisfying the 
following commutation relations: 

[J ' ,  J ~ ]  = i e l k i ~ ' ,  [ J ' ,  p k ]  = i e i k i p ' ,  [PI, P k ]  = 0. (2.14) 

E(3) is also the symmetry group of the free, time-independent, Schrodinger equation of 
non-relativistic quantum mechanics. Its own subgroup structure-also well known 
(Bacry et a1 1974)-has already been exploited in connection with symmetry breaking 
considerations (Beckers et a1 1977) and with invariant tensor fields (Beckers and 
ComtC, to be published, Beckers and Hussin, to be published). Let us recall briefly this 
E(3)-subgroup structure: there are ten non-trivial and non-equivalent subgroups of 
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E(3) = {J, P}: 

one of dimension n = 4: E(2)OT(1) = (J3,  P}; 

four of dimension n = 3: T(3)={P}, 0(3)={J}, E(2)={J3, PI ,  P'}, m= 
(2.15) 

two of dimension n = 2: T(2) ={PI, P'}, O(2)@T(l)={J3, P3};  

three of dimension n = 1 : T(1) 

{J3 + mP3, P', P', m # 0);  

{P3} ,  O(2) = {J3}, D(2)= {J3 + mP3, m # 0). 

The infinitesimal E(3)-transformations are particular cases of equations (2.4) and 
(2.5). They are 

(2.16) 

=x i+ [" .  (2.17) 

For example, we can immediately obtain the conditions corresponding to equations 
(2.8), (2.10) and (2.11). Indeed, we obtain 

D' V ( x )  = 0, D'A(x)  + 6 A A ( x )  = 0, (2.18) 

( a ~ , o ~ )  k x - x ' : x ' ' = X ' + a ' + w ' k X  

with 

D' = ( r R 6  +a) . alar. (2.19) 

Such necessary and sufficient conditions have already been exploited in studying 
invariant four-potentials (Beckers and Hussin, to be published). 

In the following sections we want to undertake a corresponding study for spinors. 
These are well known entities (Bade and Jehle 1953, Pirani 1964, Parke and Jehle 
1965, and references therein, Misner eta1 1973). The transformation laws of first-rank 
(or fundamental) contravariant and covariant spinors (labelled with undotted indices) 
and of their complex conjugate spinors (labelled with dotted indices) are 

(2.20) 

(2.21) 

where L E S L ( ~ ,  C), L" is the complex conjugate matrix associated with L, and 
A,  B, . , . , U, V, . . . = 1,2.  In such a context, raising or lowering indices is easily 
realised through the metric spinor, 

c E ( C A B ) = ( C A B ) = ( C ~ v ) = ( c ~ v ) =  (-; 3, (2.22) 

and spinor analysis tells us that spinors of higher rank may be formed of spinors of lower 
rank (by multiplication) and conversely (by contraction), etc. 

We also know that there exist meaningful correspondences between spinors and 
tensors. The simplest one is the correspondence between a mixed '1,l-spinor' and a 
'l-index tensor' or four-vector (see for example Misner et a1 1973, p 1151): with each 
real four-vector A E (A") is associated a mixed, second-rank, hermitian spinor, so that 
we can write 

XUA = '+l*WAA& (2.23) 

where '+"oA are the Infeld-Van der Waerden symbols (Infeld and Van der Waerden 
1933), whose properties are very well known. In particular, such symbols do transform 
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as four-vectors with respect to Lorentz transformations (F = 0, 1 ,2 ,3 )  and as second- 
rank spinors with respect to spinor transformations (A,  U = 1,2).  Then their trans- 
formation properties can be written 

(2.24) 

where A is the Lorentz transformation connecting the primed and unprimed systems of 
reference, and has the infinitesimal form A - 1 + w .  

a t ~ U A  - - AF”L* U Q ~ ~ B a ~ Q ~  

3. Invariant spinors and the Poincare group 

The main results of this section have already been obtained (Beckers et al1980), but we 
want to apply the infinitesimal method through spin-tensor correspondences and 
invariance arguments on tensors and on spinors separately. In fact, let us exploit the 
relation (2.23) connecting second-rank, mixed, hermitian spinors with four-vectors. If 
we remember that four-vectors invariant under the PoincarC group have already been 
derived (Beckers and Hussin, to be published), the corresponding invariant second- 
rank spinors can then be simply determined from these equations (2.23). We only have 
to impose invariance of the Infeld-van der Waerden symbols, i.e. to express, following 
their transformation properties (2.24), that 

(3.1) 
From these conditions, it is possible to determine the explicit form of the matrix L when 
infinitesimal Lorentz transformations A - 1 + w are considered. A rather lengthy but 
simple calculation leads to 

(3.2) 
Such a relation can be written in a compact form if we notice that the Infeld-Van der 
Waerden symbols are usually chosen in the following form (Pirani 1964): 

A& L * U Q L ~  B[+v vB. acrUA - - 

A 1  L~~ = s B + ~ ~ ~ y ~ F i ‘ A ~ y ~ ~ .  

= 2--”’(1, U), ) = 2-1’2(u, -U*) ,  (3.3) 

where the U ’ S  are the Pauli matrices. We obtain, from equations (3.2) and (3.3), 

(3.4) 

(3.5) 

Let us insist on the fact that equation (3.4) corresponds to a specific invariance of 
spinorial quantities. 

Now, as already mentioned, spinor analysis tells us in particular that an arbitrary- 
rank spinor may be formed of spinors of lower rank. Then the fundamental spinors 
associated with the fundamental representations of SL(2, C) are of special interest. Let 
us establish the necessary and sufficient conditions of invariance of a fundamental 
spinor transforming according to equation (2.20). Under infinitesimal PoincarC trans- 
formations, the invariance is expressed by 
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We finally obtain 

DtA(X) =$(a. a ) A B p ( x )  ( A  = 1 ,2 )  (3.7) 

where D is given by equation (2.8). Explicitly, these invariance conditions are 

n3t1(x)  + (a’ - ii22)t’(x) = 2 0 t 1 ( x )  ( 3 . 8 ~ )  

(3.8b) 

This result is equivalent to that obtained elsewhere (Beckers et a1 1980) when 
(i, 0)-spinors are considered. Moreover, by using equations (3.8), it is also very easy to 
show that there exists a ‘kinematical’ group (Bacry et a1 1970) of a fundamental uniform 
and constant spinor. This ‘kinematical’ group is of dimension six; it is generated by the 
four P”s and the two generators of A(2): 

A ’ =  j 2 - ~ I ,  A ~ =  J ’ + K ~ .  (3.9) 

In order to be complete (in connection with other contributions: Combe and Sorba 
1975, Beckers and Hussin, to be published), we can also define the stabiliser of the 
fundamental spinor t(x) in the PoiiicarC group P as: 

Stabp (5) ={(a, A): (a, A) E P and c u 3 ” ’ f ( x )  = ((x)}. (3.10) 

Then we easily obtain the following result: if a subgroup G of P stabilises the spinor 6, 
then at any point xo belonging to Minkowski space for which [(xo) has a non-zero finite 
value, the set of transformations in G of the form (xo - Axo, A) generates a Lie algebra 
of dimension 6 2 ,  conjugate to the homogeneous part of the Lie algebra of the 
‘kinematical’ group. 

In combining these results, we deduce that the ‘kinematical’ group {P“, A’ ,  A2} is 
the largest Poincari. subgroup which admits a non-zero fundamental spinor, and that 
the only PoincarC subgroups which are stabilisers of 6 in P are among those of 
dimension s 6 .  These results lead to the discussion of SPIPS and NONSPIPS as discussed 
elsewhere (Beckers et al 1980). 

Here let us apply the method-and more particularly the conditions (3.8)-to the 
case of the group E(3) and its subgroups (2.15), all cases characterised by dimensions 
less than or equal to six, the dimension of the ’kinematical’ group. 

4. Invariant fundamental spinors under E(3) and its subgroups 

When E(3)-transformations of the form (2.16) are considered, the necessary and 
sufficient conditions of invariance of a fundamental spinor (3.8) become 

Let us exploit these conditions in connection with the cases of E(3) and its ten 
non-trivial subgroups (2.15). Firstly, we notice that only two of the eleven algebras 
contain an homogeneous part of dimension greater than that of the algebra of A(2): 
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these are the E(3) and O(3) cases. Then we immediately conclude that there are no 
non-trivial invariant spinors in these two cases. Such a result can also be obtained by 
dealing directly with equations (4.1) and (4.2). Secondly, let us apply this method to the 
(nine) other cases: we shall find two more trivia! results and seven non-trivial spinors. 

Invariance under Pi (i = 1 ,2 ,3 )  corresponds to the parameters 

= (Si, a:, Si) ,  8 = 0 ,  (4.3) 

and to the differential operator (4.2) 
D'(i) + / a x ' ,  

5' = & Y ,  2 ) .  

F' = F l k  f ) ,  

F' = F ' k  Y ) ,  

Under P', P2 or P3 we obtain respectively 

F 2  = t 2 ( Y ,  f ) ,  

t2 = F 2 ( x ,  f ) ,  

F2 = F 2 ( x ,  Y ) .  

or 

(4.4) 

(4.7) 

Under all the P's, we evidently deduce the constant character of the two spinor 
components. 

Invariance under J 3  corresponds to the parameters 

8(3)=  (0, 0, 8:)  = (0, 0, l ) ,  a=o, (4.8) 

and to the differential operator (4.2) 

D ' ' ( ~ )  = y a l a x  - x a / a y .  (4.9) 

Now the different cases can be discussed in a very simple way. 
Invariance under E(2)OT(1), n = 4, evidently gives a trivial result: 5 = 0. 
Invariance under T(3), n = 3, requires the constant character of the two 

5' = c, F 2  = C'. (4.10) 

Invariance under E(2), n = 3, leads to a trivial result although invariance under E(2), 
n = 3, will give us a non-trivial spinor. Indeed, the P1 and Pz  generators impose only __ a 
z-dependence of the components 5' and F 2  and the system (4.1) becomes, in the E(2) 
case, equivalent to the equations ( m  # 0) 

i51(z )+2ma5' (z ) /az  = 0, ( 4 . 1 1 ~ )  

i t2 (2) -2mat2(z ) /az  = 0, (4.11b) 

components: 

__ 

(4.12) 

where C and C' are two constants. 
Invariance under T(2), n = 2, evidently gives the spinor 

t l =  tlbL F2 = t 2 ( 2 ) .  (4.13) 

Invariance under 0(2)OT(l) ,  n = 2, will be simple to express if cylindrical coor- 

p = ( x 2  + y 2 ) ' l 2 ,  4 =tan-' ( y / x ) ,  2 = 2, (4.14) 

dinates are chosen: 
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because the differential operator (4.9) is in this case 
~ d 3 )  - =-a la+  

and the system (4.1) reduces to 

(i + 2a/a4)t1(p, 4 )  = 0 ,  

(i- 2ala4)t2(p, 4 )  = 0, 

when P3 invariance is also taken into account. The invariant spinor reads 

&P, 4 )  = C(P)  r2  = ~ ' ( p )  ei+". 

Invariance under T(1) or 0(2) ,  n = 1, gives the respective results 

r 1  = t'b, Y ) ,  

= C(r, 0)  

tz = t2b, Y ) ,  

or 

t2 = C'(r, e )  ei+'2, 

(4.15) 

( 4 . 1 6 ~ )  

(4.16b) 

(4.17) 

(4.18) 

(4.19) 

when, in the second case, polar coordinates ( r ,  8,4) are used. 

coordinates, i.e. 

- 
Finally, invariance under 0(2) ,  n = 1, becomes simple if we introduce helical 

p = ( x 2 +  y2)1 '2 ,  U = i(4 + z / m ) ,  v = & ( z / m  - 4 ) .  (4.20) 

The corresponding differential operator (4.2) then takes the form 

D - a j d ~  (4.21) 

and we obtain the invariant spinor: 

t'= ~ ( p ,  z / m  - 4 )  exp[-ii (4 +z/m)I ,  t2 = ~ ( p ,  z / m  - 4 )  exp[ii (4 + z / m ) ] .  
(4.22) 

5. Invariant second-rank spinors and four-vectors 

Let us consider again second-rank spinors and four-vectors and their invariance 
properties under the PoincarC group. The infinitesimal method directly applied to 
second-rank spinors leads us to 

OA ( x ' )  = ,y OA[ (1 + w ) x  + a ]  = L* OVLAB,y VB ( x )  

(am a ) * u V * v A ( X ) f ( ,  s a ) A B X i i l s  = 2 0 X i l A ( x ) .  

(5.1) 
where we have to use the infinitesimal form (3.4) of the matrix L. Explicit develop- 
ments of equations (5.1) give the invariance conditions in the form 

(5.2) 
Written explicitly in terms of the covariant components of the spinor, these conditions 
become 

(a' - iR2),yil + (CL' - io2)*,yi2 - 2(43  - ~ ) , y i z  = 0 ,  

(CL' + ~ R ~ ) x ~ ~  + (0' - iR2)*,yil + 2(ie3 + ~ ) , y i '  = 0 ,  

(a' -iR2),yil + (a1 + i02)*xi2 - 2(io3 -D)xiz = 0 ,  

(a' + iR2),yi2 + (a' + iR2)*,yil + 2(43  +D)xil= 0. 

(5.3) 
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Let us show that such a system can easily be recovered from vanishing Lie derivatives on 
spinors. In D 2 we recalled such a geometrical concept on four-vectors (cf equations 
(2.12) and (2.13)) and this is very often used when differential forms are considered. If 
spinor fields are concerned, the concept of Lie derivative is usually not so clear, and a 
specific literature (Kosmann 1966, 1972 and references therein, Jhangiani 1978) has 
already dealt with such a subject. Here we can express this invariance by 

LXXUA = 0, VU, A = 1,2 ,  (5.4) 

where the vector fields X are once again defined by. (2.12). Now, if we consider 
hermitian spinors we can use (2.23) and obtain 

LXXUA = L X ( ~ ~ U A A , )  = C+~UA(LXA,) ( 5 . 5 )  

because the Infeld-Van der Waerden symbols are constants and Lx is a linear operator. 
Consequently, in connection with equation (5.4), we obtain 

LXxoA=O * LxA, = O  (5.6) 

and equations (5.4) and ( 5 . 5 )  give 

when the choice (3.3) is made for the a-symbols. 
Finally, if we express the vanishing of each element of the matrix (5.7), we 

immediately obtain through the relations (2.13) or (2.10) and (2.11) the set (5.3) of 
invariance conditions on the spinor components. 

As a last point, we now want to show the consistency of the explicit expressions of 
the invariant hermitian (l , l)-spinor and invariant four-vector when the symmetry 
group concerned is the group E(3). Let us take the simple case of E(3) itself: the only 
four-vector A invariant under E(3) is of the form (C, 0, 0,O) where C is a constant 
(Beckers and Hussin, to be published). In the second-rank spinor x, as invariance under 
all the P's is required, all the components of x have to be constants. Then invariance 
under the J's  implies 

D'''x = 0 Vi. (5.8) 

We then immediately obtain 

X l 2  = xi1 = 0, x11 = x 2 2  = C ' ,  
so that 

x=(" '  "=-( 1 Ao+A,  
0 C' 42 A l + i A 2  Ao-A3  

and consequently 

A = (C, 0, 0, 0). 

All the cases corresponding to the non-equivalent subgroups of E(3) will give all the 
results already obtained at the level of four-vectors (Beckers and Hussin, to be 
published). 
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